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Vortex motion in doubly connected domains
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(Received 28 March 2008 and in revised form 11 July 2008)

The unsteady two-dimensional rotational flow past doubly connected domains is
analytically addressed. By concentrating the vorticity in point vortices, the flow is
modelled as a potential flow with point singularities. The dependence of the complex
potential on time is defined according to the Kelvin theorem. The general case of
non-null circulations around the solid bodies is discussed. Vortex shedding and time
evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus
turbine are presented as physically coherent examples.

1. Introduction
The study of the two-dimensional rotational flow in domains confined by multiple

bodies is relevant in several problems such as, among many others, the aerodynamics
of multiple airfoils, the unsteady motion past multi-bladed vertical-axis wind turbines
and the sea motion past islands.

Neglecting the diffusion effects, the flow can be assumed as inviscid and governed
by the Euler equations. By concentrating the vorticity on singular vortex particles, the
flow reduces to a potential flow affected by vortex singularities. The theory of such a
kind of flow is very well established, with the main reference ascribable to Lin (1941),
where the Hamiltonian theory of vortex motion in multiply connected domains has
in general been set.

Johnson & McDonald (2004) have provided a practical example of such a flow
model by studying the interaction of vortices with islands in sea motion. They
considered the Hamiltonian motion of a vortex in the doubly connected domain
bounded by two circular cylinders, assumed as simple models for islands in the sea.
Crowdy & Marshall (2005) generalized the study to any finite number of circular
islands. Further examples of vortex motion, in doubly connected domains, have been
presented by Johnson & McDonald (2005), who considered the motion of vortices
near barrier gaps.

For an inviscid flow with given far-field boundary conditions, the circulations past
solid bodies are free parameters which define multiple-flow solutions. In general,
physical considerations can help in assuming their values. For instance, in the above-
cited works, the circulations around the islands are assumed as null and, on the basis
of Kelvin’s theorem, kept constant in time. Nevertheless, such an assumption shares
the same arbitrariness as any other assumed initial circulation.

In the inviscid framework, vortex-shedding phenomena can reasonably be described
when the considered bodies present sharp edges which force the flow to separate. When
using a vortex method, the wake issued by the edges can be simulated by adding
point vortices which satisfy the Kutta condition at prescribed time intervals. In such a
way, the evolution in time of the circulation past each body is defined by the amount
of shed vorticity.
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Figure 1. ν → λ2 → z mapping.

In this work, the motion of vortices in doubly connected domains is addressed
for the general case of non-null circulations around bodies. It is shown how the
Kelvin theorem defines the time dependence of the complex potential of the motion.
Vortex-shedding phenomena in doubly connected domains are described as physically
meaningful examples. They are pertinent to the transient fluid motion past a two-
element airfoil and past a two-bladed vertical axis wind turbine (VAWT).

2. Flow past a two-element airfoil
The solution of the potential flow past a two-element airfoil has long been known.

Lagally (1929) provided the solution of the flow past two circular cylinders and
Ferrari (1930) gave the solution for the flow past a biplane section.

First, we recall the steady-flow solution. As shown by Ives (1976), a general mixed
analytical–numerical conformal mapping method can be adopted to transform any
arbitrary double airfoil section into two circles. For the present purpose of providing
an example, the mapping sequence suggested by Ives (1976) is reversed to avoid the
numerical part of the transformation and to speed up the flow computation. Instead
of mapping a given couple of airfoils in two circles, we transform, in closed form, two
given circles into two airfoils. As shown in figure 1, two circles of the complex ν-plane
are mapped onto a wing-flap section of the complex z-plane. The main airfoil results
in a Kármán–Trefftz airfoil and the flap in a variation of a Kármán–Trefftz airfoil.

On the complex ν-plane, let us consider the (main) unit circle and the (secondary)
circle centred at (xs, 0) and with a radius rs . The function

λ − λT

λ − λN

λ − 1/λ�
T

λ − 1/λ�
N

=

(
ν − νT

ν − νN

ν − 1/ν�
T

ν − 1/ν�
N

)τs

, (2.1)

maps the principal circle onto the unit circle and the secondary circle onto a kind of
airfoil of the λ-plane. In (2.1), � denotes complex conjugation, νT is located on the circle
and corresponds to the trailing edge, νN is inside the circle and τs = 2 − εs/π, with εs

being the trailing-edge angle. The final shape of the secondary airfoil depends on the
choice of xs, rs, νT , νN, εs . The other parameters λT , λN , are determined by regularity
conditions of the mapping. Details on their determination are given in Ives (1976).

By setting λ1 = λeiβ , the unit circle is rotated by β and, through the further
transformation λ2 = λ1(1 − zc) + zc, it is mapped onto a circle that is centred in
zc and which goes through point λ2 = 1. Finally, the Kármán–Trefftz mapping

z − 1

z + 1
=

(
λ2 − 1

λ2 + 1

)τm

(2.2)

generates the main airfoil and the final shape of the secondary airfoil in the physical



Vortex motion in doubly connected domains 145

1

1

0
A

AB Ts

Ts

D A

0

Tm

Ts

Tm

cc

xs
d

rs B
C

C

C

a
Γ –Γ

–b

B

D
D

Tm

ν-plane μ-plane χ-plane

π

–π

Figure 2. ν → μ → χ mapping.

z-plane. The choice of zc defines the camber and thickness of the main airfoil and τm

is τm = 2 − εm/π, with εm being the trailing-edge angle.

2.1. The steady flow

In order to define the flow field, it is convenient to map the region bounded by the
airfoils, that is, the region on the outside of the ν-plane circles, inside a rectangle of
the complex χ-plane, as shown in figure 2). The two circles of the ν-plane can be
considered as belonging to a family of Apollonius circles with foci in d + c and d − c,
with d = (x2

s − r2
s + 1)/2xs and c =

√
(xs − d)2 − r2

s . The mapping ν1 = (ν − d)/c brings
the foci into ν1 = ± 1 and the transformation μ = (ν1 + 1)/(ν1 − 1) maps the region
bounded by the two circles on an annulus of the μ-plane, whose outer boundary is a
circle with radius ρs > 1, which corresponds to the secondary airfoil, and whose inner
boundary is a circle with radius ρm < 1, corresponding to the main airfoil. Finally,
χ = log(μ) maps the annulus in the rectangle −b � Re(χ) � a, −π � Im(χ) � π, with
b = − log(ρm) and a = log(ρs).

Briefly, the chain mapping χ → z is such that the left-hand side of the above-defined
rectangle is mapped onto the main airfoil, the right-hand side onto the secondary
airfoil and the origin of the χ-plane onto the point at infinity of the z-plane. The
upper and lower sides of the rectangles are periodic boundaries that correspond to a
single line which connects the two airfoils of the z-plane.

Following the same reasoning as Lagally (1929) and Ferrari (1930), the complex
velocity dw/dχ in the χ-plane, with w denoting the complex potential, has to be
expressed by a doubly periodic function. The impermeability condition of the solid
boundaries can, in fact, be enforced by infinite reflections with respect to the vertical
sides of the rectangle and as a consequence, the complex velocity has to be periodic,
possessing as semiperiod ω = a +b. Moreover, as a result of the mapping, the velocity
has to hold the further imaginary semiperiod ω′ = iπ.

With reference to figure 2, let the rectangle −b � Re(χ) � 2a + b, −iπ � Im(χ) � iπ
be assumed as the fundamental rectangle. The regularity of the flow field implies
that dw/dχ can have singularities only at χ = 0, χ = 2a. These can be second-order
poles and first-order poles which represent, at the infinity of the physical z-plane,
a non-null flow velocity and a vortex, respectively. According to the above-stated
double periodicity, dw/dχ is then expressed by the elliptic function:

dw

dχ
= −[Q�

∞℘(χ) − Q∞℘(χ − 2a)] +
Γ

2πi
[ζ (χ) − ζ (χ − 2a)] + iκ, (2.3)
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Figure 3. Streamline and Cp patterns for the steady flow at α = 5◦.

where ζ and ℘ are the Weierstrass functions that express the first- and second-order
poles, respectively, and κ is a real constant. By integration, the complex potential
then becomes

w = Q�
∞ζ (χ) − Q∞ζ (χ − 2a) +

Γ

2πi
log

σ (χ)

σ (χ − 2a)
+ iκχ, (2.4)

where the Weierstrass σ function has been introduced.
The value of the parameter Q�

∞ is defined by the complex velocity at infinity in the
physical plane q�

∞ = limχ → 0(dw/dχ)/(dz/dχ), which yields

Q�
∞ = −2q�

∞
c(1 − zc)e

−iβ

τs τm

λT − λN + 1/λ�
T − 1/λ�

N

νT − νN + 1/ν�
T − 1/ν�

N

.

According to the theory, two elliptic functions with the same poles can only differ
for a constant, and thus (2.3) is unique once κ is defined. The Kutta condition, that is,
(dw/dχ)χTm ,χTs

= 0, establishes the values of Γ and κ , with χTm
, χTs

being the images
of the trailing edges on the χ-plane.

Let γm, γs denote the circulations past the main and secondary airfoils, respectively,
then Γ = − (γm + γs), that is, Γ is the opposite of the total circulation past the
two airfoils. With reference to figure 2, γm = wC − wD , that is, by exploiting the
quasi-periodicity properties of the ζ and σ functions (see Tricomi 1951),

γm = −4iη′
[
Im(Q∞) +

Γ a

2π

]
− 2π κ, γs = −Γ − γm, (2.5)

with η′ = ζ (ω′).
An example of a flow past a double airfoil is represented in figure 3 where the

streamline and Cp patterns are pertinent to an airfoil at angle of incidence α = 5◦.

2.2. Transient flow

In order to represent a physically meaningful unsteady rotational flow field, let us
consider the transient that follows the impulsive starting of the above double airfoil.

At the initial time, the flow is at rest and the total circulation is null. Once the flow
is started, vorticity is shed into the wakes. According to a discrete vortex method
(see, for instance, Clements 1973), the wake can be modelled by concentrating the
vorticity in point vortices. According to such a model, at fixed time steps, a point
vortex is added to each airfoil in a fixed location close to the trailing edge, with a
γj circulation defined by the Kutta condition. As the added vortices move, the Kutta
condition is violated, but it is restored as soon as another two vortices are released.

This discrete approximation of the continuous evolution of smooth trailing-edge
vortex sheets has been discussed in the literature (see, for instance, Clements 1973;
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Sarpkaya 1975; Kiya & Arie 1977 and references therein). A heuristic choice of
parameters, as release timing and location, is required. This choice has a negligible
effect on a possible asymptotic steady solution, but it affects the accuracy of the
description of a transient flow. The vortex method here used is the same as in
Zannetti & Iollo (2003), where the choice of the parameters was based on the thumb
rules suggested in literature and on numerical experiments. A sort of validation has
been obtained by checking the ability of the method to predict the correct Strouhal
numbers of flat plates at incidence and to provide the self-similar structure of rolled-
up vortex-sheets (see Pullin 1978). Assuming q∞ as the reference velocity and c/2 as
the reference length, with c being the main airfoil chord, the release locations have
been set downstream from the trailing edges at the distance d = 0.01, which is in the
range of the values recommended in literature. With a second-order integration time
step dt = 0.001, the release interval has been set at dtr = k dt , with k varying from
k = 1, for short time transients, to k = 10, for longer simulations.

Following the above reasoning concerning the steady flow, the χ-plane complex
velocity and complex potential are

dw

dχ
= −[Q�

∞℘(χ) − Q∞℘(χ − 2a)] +
1

2πi

N∑
jm=1

γjm
[ζ (χ − χjm

) − ζ (χ + χ�
jm

− 2a)]

+
1

2πi

N∑
js=1

γjs
[ζ (χ − χjs

) − ζ (χ + χ�
js

− 2a)] + iκ(t), (2.6)

w = Q�
∞ζ (χ) − Q∞ζ (χ − 2a) +

1

2πi

N∑
jm=1

γjm
log

σ (χ − χjm
)

σ (χ + χ�
jm

− 2a)

+
1

2πi

N∑
js=1

γjs
log

σ (χ − χjs
)

σ (χ + χ�
js

− 2a)
+ iκ(t)χ, (2.7)

where the m and s subscripts refer to vortices shed by the main and secondary airfoils,
respectively, N is the number of the released vortex couples, χjm,s

are their locations
and κ(t) is a real function of time, for now unknown, which uniquely defines the
elliptic function (2.6).

According to the Kelvin theorem, during the transient, the sum of the bound
circulation and shed circulation has to be null for each airfoil, that is, γm = −

∑
γjm

,
γs = −

∑
γjs

. With reference to figure 2, by definition

Re

∮
dw

dχ
dχ = −(wC − wD) − (wA − wB) =

N∑
jm=1,js=1

(γjm
+ γjs

)

and
(wC − wD) = γm, (wA − wB) = γs;

it follows that function κ(t) is established by enforcing either

(wC − wD) = −
N∑
jm

γjm
or (wA − wB) = −

N∑
js

γjs
. (2.8a, b)

For this purpose, in order to manage easily the branch cuts which connect points
(χjm,s

) and (2a − χ�
jm,s

), it is convenient to use (2.8a), which yields

κ =
1

2π

⎧⎨
⎩

N∑
jm=1

γjm
+ 2

η′

i π

2N∑
jm,s=1

γjm,s
[a − Re(χjm,s

)] − 4i η′Im(Q∞)

⎫⎬
⎭ , (2.9)
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which has been obtained by using the quasi-periodicity properties of the Weierstrass
ζ and σ functions.

Equation (2.9) defines function κ(t) through the dependence, on time, of the vortex
locations χjm,s

(t) during their motion.
Moreover, each time two new vortices are shed, the Kutta condition is enforced,

that is, the two equations (dw/dχ)χTm
= (dw/dχ)χTs

= 0 are set. Together with (2.9),
they form a set of three linear equations for the unknown value of κ and the unknown
values of the circulations γNm

, γNs
of the newly arisen vortices.

Johnson & McDonald (2004) considered the case where q∞ = 0, γm = γs = 0, with
no vortex shedding taking place and with N free point vortices in the flow field. Since
(wC − wD) + (wB − wA) = 0, the total circulation is null, which implies a vortex at
infinity, that is, at χ = 0, whose strength is Γ = −

∑N

j = 1 γj . Exploiting the relation
between the Weierstrass σ and Jacobi ϑ1 functions, (2.7) reduces to (2.11) of Johnson
& McDonald (2004), plus a negligible constant.

The vortex method implemented here is based on integrating in time the vortex
locations on the transformed χ-plane and then on mapping them on the physical z-
plane. Let the subscript j denote either jm or js , therefore χ̇ �

j = ż�
j /(dz/dχ)�. According

to the Routh (1881) rule (see also Clements 1973; Saffman 1992),

ż�
j =

(
χ ′�

j − γj

4πi

d2z/dχ2

dz/dχ

)
/(dz/dχ) hence χ̇ �

j =

(
χ ′�

j − γj

4πi

d2z/dχ2

dz/dχ

)
/J, (2.10)

where J is the mapping Jacobian J = |dz/dχ |2 and χ ′�
j is the velocity that a free

vortex should possess through advection on the χ-plane, that is,

χ ′�
j = lim

χ→χj

(
dw

dχ
− γj

2πi

1

χ − χj

)
= −[Q�

∞℘(χj ) − Q∞℘(χj − 2a)]

+
1

2πi

[
2N∑

n=1,n�=j

γnζ (χj − χn) −
2N∑
n=1

γnζ (χj + χ�
n − 2a)

]
+ iκ(t).

The Hamiltonian H , which is pertinent to the vortex motion on the physical
z-plane, can be written in parametric form, with χ as the parameter. According to
Lin (1941),

H =

2N∑
i=1

γi Im[Q�
∞ζ (χi) − Q∞ζ (χi − 2a) + i κ χi] −

2N∑
i>j,j=1

γiγj

2π
log

∣∣∣∣ σ (χi − χj )

σ (χi + χ�
j − 2a)

∣∣∣∣

+

2N∑
i=1

γ 2
i

4π
log |σ (χi + χ�

i − 2a)| +

2N∑
i=1

γ 2
i

4π
log

∣∣∣∣ dz

dχ

∣∣∣∣ .

As in Zannetti & Franzese (1994), the (ξ, η)-coordinates of the χ-plane (ξ + i η = χ)
can be assumed as non-canonical variables, so that the Hamiltonian system governing
the vortex motion takes the form

γi ξ̇i = (∂ηi
H )/J, γiη̇i = −(∂ξi

H )/J,

which is equivalent to (2.10).
A simulation of a transient flow has been computed for the same flow whose

asymptotic steady state was computed above. Figure 4, on the lower side, shows two
snapshots of the initial rolling up of the wakes released by the trailing edges of the
two airfoils. The history, in time, of the circulations around the airfoils is presented on
the upper side and it shows how the circulations asymptotically tend to the stationary
values.
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Figure 4. Time history of the airfoil circulations and wake snapshots at t = 0.3, t = 0.7, and
with 2N = 600, 2N = 1400 vortices, respectively.

3. Two-bladed Darrieus turbine
According to the Riemann mapping theorem, any doubly connected domain can

be conformally mapped onto an annulus with a fixed radius ratio. As a consequence,
the above investigation is general and the study of any topologically equivalent flow
can be based on it.

Although the above example of unsteady flow is somewhat academic, here, as a
further example, an application is presented where the unsteadiness is unavoidable
and essential, and where the behaviour of unsteady wakes has an important effect on
the performances of a fluid dynamic device. Moreover, the unsteady character of the
flow analysed here is more general, being relevant to moving bodies.

A two-bladed vertical axis wind turbine (VAWT) with a Darrieus architecture is
taken into consideration. It consists of two straight blades rotating around a vertical,
that is, orthogonal to the wind shaft. During each cycle, the blades undergo a
highly unsteady relative fluid motion with large oscillation of the incidence and, as
a consequence, the circulation past them varies in time, and vorticity is shed into the
wakes. In addition, the blade trajectories intersect the wakes and affect the turbine
performances to a great extent. The description of such an unsteady flow is therefore
useful to understand the phenomena and to improve the design of such a VAWT.

Peculiar blade sections, bearing vortex-trapping cavities to prevent the occurrence
of dynamic stall, were proposed in Zannetti, Gallizio & Ottino (2007), where the
unsteady flow field was described by a vortex method that is similar to the present
one, but the above-discussed time dependence of the parameter κ was neglected. In
the present work, the complex potential is emended according to the above analysis.
For the sake of simplicity, traditional blade sections, without vortex-trapping cavities
are considered, as the extension of the present formulation to any more general
doubly connected domain is straightforward.

With the same spirit as in the double airfoil analysis, the blade sections are here
defined by simple analytic functions, in closed form, starting from circles.

The mapping sequence is shown in figure 5. Let us consider the annulus formed
by the circles centred on the origin of the μ-plane and with the radii L < 1 and 1/L,
respectively. The bilinear function

ν = i ηo

1 + μ

1 − μ

maps the two circles onto the two mirrored Apollonius circles cu, cd of the ν-plane,
which have the foci at νo = ± i ηo, the centres at νc = ± νo(1 + L2)/(1 − L2) and the
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same radius ρc = 2 L ηo/(1 − L2). Finally, the mapping

z2 − z2
T

z2 − z2
N

=

(
ν2 − ν2

T

ν2 − ν2
N

)τ

, τ = 2 − ε

π
,

generates the two blades on the physical z-plane. This mapping is such that the two
blades can be superimposed through a 180◦ rotation. The blade geometry and turbine
aspect ratio are defined by the parameters η, νt and νn, with ± νt being relevant to
the trailing edges and ± νN being inside the circles. The values of zT , zN are defined
by the conditions z(0) = 0 and limν → ∞ dz/dν = 1, that is,

z2
T = τ ν2

T

1 − (νN/νT )2

1 − (νN/νT )2τ
, z2

N = [zT (νN/νT )τ ]2
.

Let the blades be spinning with the angular velocity Ω around the origin of the
z-plane. According to the Milne-Thomson (1968) approach, the complex potential
w of the absolute motion is expressed in a frame of reference which moves with
the body, that is, the z-plane is considered as rotating around its origin with the
turbine angular velocity Ω . According to the absolute nature of the flow motion, the
streamfunction is not constant on the blade contours, but has a value that is defined
by the condition of impermeability.

The complex potential can be expressed as the sum of two terms, w = w1 + w2,
where w1 is such that the streamfunction on the blade surfaces will have a constant
value and w2 is such that the streamfunction will assume the values which satisfy the
impermeability condition.

Let the μ-plane be mapped onto the χ-plane by χ = log μ. As above, the annulus is
thus mapped onto a rectangle, with a = b = − log(L), and the term w1 can be assumed
as coincident with the potential expressed by (2.7), with Q∞ = 2 i ηo q∞ exp(i α), and
with the subscripts m and s pertinent to the upper and lower blades of figure 5,
respectively. It should be noted that the wind velocity direction α = − Ω t depends
on time.

The term w2 should not add any singularity to the flow field and as a consequence,
its general expression can be written as a Laurent series which converges inside the
annulus of the μ-plane, that is,

w2 =

∞∑
n=1

(an + ibn)(Lμ)n−1 +

∞∑
n=1

(cn + idn)(μ/L)−(n−1).
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Figure 6. Time history of the blade circulations and wake visualization at t = 28.5 with
2N = 12 400 vortices.

Let z = z(μ) be the μ → z mapping, with μ = ρ exp(i ϕ), the impermeability condition
(Milne-Thomson 1968) yields

ψs = −1

2
Ω |z(eiϕ/L)|2, ψm = −1

2
Ω |z(Leiϕ)|2,

where the subscripts m and s refer to the interior and exterior circles of the μ-plane
annulus, respectively. The following two relationships can hence be derived:

ψs =

N∑
n=1

(bn + dnL
2n−2) cos(n − 1)ϕ + (an − cnL

2n−2) sin(n − 1)ϕ,

ψm =

N∑
n=1

(bnL
2n−2 + dn) cos(n − 1)ϕ + (anL

2n−2 − cn) sin(n − 1)ϕ,

which allow the coefficients an, bn, cn, dn of the above series, suitably truncated, to be
evaluated and thus the complex potential w to be fully defined.

In the same way as described for the two-element airfoil, the function κ(t) can
be defined by satisfying the Kelvin theorem for each blade. Let us assume that, at
the initial time, the turbine and the flow are at rest and as a consequence, the total
circulation and the circulation around each blade are null. During the motion, the
sum of the bound and shed circulations should remain null for each blade. As for
the above two-element airfoil, the enforcing of one of (2.8a, b) suffices to satisfy
the requirement. Since, on the χ-plane, w2 is periodic with the period 2 π i, (2.9)
determines the function κ(t) as above.

The strengths of the shed vortices are determined by enforcing the Kutta condition.
For moving bodies, it can be expressed by the requirement that the relative velocity
is non-singular at the trailing edges. Let us denote the streamfunction of the relative
motion with ψr and the angle between the radial r and the normal to the body n

directions with δ, therefore

lim
z→zTm,s

∂ψr

∂n
= lim

z→zTm,s

[Im(dw/dχ)|dχ/dz| + Ω |z| cos δ] �= ∞.
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Since dχ/dz → ∞ at the trailing edges, the Kutta condition is expressed by the
equations Im(dw/dχ)Tm,s

= 0.
A snapshot of the wakes issued by the blades and the time history of the bound

circulations is presented in figure 6 for a turbine with the chord/radius ratio c/R = 0.74
and with the wind/blade-speed ratio q∞/Ω R = 0.88.

4. Conclusions
A theory of the vortex motion past bodies possessing circulation has been presented

for doubly connected domains.
As paradigmatic examples, the inviscid rotational flows, that follow an impulsive

start, have been described by a vortex method for an airfoil-flap section and for a
two-bladed Darrieus wind turbine.

The flow field has been transformed, by conformal mapping, into a doubly periodic
domain where the complex velocity is expressed by an elliptic function, which,
according to the theory, is unique once an additive function κ(t) is defined. This
function is established by the Kelvin theorem, that is, by the physical requirement
that the sum of the bound and shed circulations past each body must remain constant.
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